Step of Proof: decidable__equal_bool
12,41
postcript
pdf
Inference at
*
1
3
I
of proof for Lemma
decidable
equal
bool
:
(tt = ff)
(
(tt = ff))
latex
by ((((Sel 2 (D 0))
CollapseTHENM (BLemma `btrue_neq_bfalse`))
)
CollapseTHEN (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
,
t
T
,
P
Q
Lemmas
bfalse
wf
,
btrue
wf
,
bool
wf
,
btrue
neq
bfalse
origin